
Using Dynamic Sensitivity Analysis

to Assess Testability

Je�rey Voas�, Larry Morelly, Keith Millerz

Abstract: This paper discusses sensitivity analysis and its relationship to

random black box testing. Sensitivity analysis estimates the impact that

a programming fault at a particular location would have on the program's

input/output behavior. Locations that are relatively \insensitive" to faults

can render random black box testing unlikely to uncover programming faults.

Therefore, sensitivity analysis gives new insight when interpreting random

black box testing results. Although sensitivity analysis is computationally

intensive, it requires no oracle and no human intervention.

Index Terms: Sensitivity analysis, random black box testing, data state,

data state error, testability, fault, failure.

�Supported by a National Research Council Resident Research Associateship.
ySupported by NASA Grant NAG-1-824.
zSupported by NASA Grant NAG-1-884.

1



1 Introduction

Testing seeks to reveal software faults by executing a program and comparing

the output expected to the output produced. Exhaustive testing is the only

testing scheme that can (in some sense) guarantee correctness. All other

testing schemes are based on the assumption that successful execution on

some inputs implies (but does not guarantee) successful execution on other

inputs. It is well known that some programming faults are very di�cult to

�nd using testing, and some work has been done on classifying types of faults

[1]. But in this paper, we do not focus on the faults that exist; instead, we

focus on characteristics of a program that will make faults (if they exist)

hard to �nd using random black box testing. Thus correctness is not our

direct concern. Instead, given a piece of code, we try to predict if random

black box testing is likely to reveal any faults that exist in that code. The

type of faults that we are considering in this paper are faults which have

already been compiled into the code.

The testability of a program is a prediction of its ability to hide faults

when the program is black box tested with inputs randomly selected from

a particular input distribution. Testability is determined by the structure

and semantics of the code and by an assumed input distribution. Thus, two

di�erent programs can compute the same function but may have di�erent

testabilities. A program is said to have high testability when it readily reveals

faults through random black box testing; a program with low testability is

unlikely to reveal faults through random black box testing. Low testability is

a dangerous circumstance because considerable testing may succeed although

the program has many faults.

2



A fault can lie anywhere within a program, so any method of determining

testability must take into consideration all places in the code where a fault

can occur. We use the term location to indicate a place in a program where a

fault can occur. Although the techniques we propose can be used at di�erent

granularities, this paper concentrates on locations that roughly correspond

to single commands in an imperative, procedural language.

We expect that any method for determining testability will require either

extensive analysis, a large amount of computing resources, or both. However,

the potential bene�ts for measuring testability are signi�cant. If testability

can be e�ectively estimated, we can gain considerable insight into several

issues important to testing:

1. Where to get the most bene�t from limited testing resources:

A module with low testability requires more testing than a module

with high testability. Testing resources can therefore be distributed

more e�ectively.

2. When to use some veri�cation technique other than testing:

Extremely low testability suggests that an inordinate amount of testing

may be required to gain con�dence in the correctness of the software.

Alternative techniques such as proofs of correctness or code review may

be more appropriate for such modules.

3. The degree to which testing must be performed in order to be convinced

that a location is probably correct:

Testability can be employed to estimate how many tests are necessary

to gain desired con�dence in the correctness of the software.

3



4. Whether or not the software should be rewritten:

Testability may be used as a guide to whether or not critical software

has been su�ciently veri�ed. If a piece of critical software has low

testability, then it may be rejected because too much testing will be

required to su�ciently verify a su�cient level of reliability.

In order to understand our approach to measuring testability, we de�ne

a new term, \sensitivity." We de�ne the sensitivity of a location S to be a

prediction of the probability that a fault in S will result in a software failure

under some speci�ed input distribution. If a location S has a sensitivity

of .99 under a distribution D, then it is predicted that almost any input

in the distribution that executes the location will cause a program failure.

If a location has a sensitivity of .01 under D, then it is predicted that no

matter what fault is present at S, few inputs that execute S would cause the

program to fail.

Sensitivity is clearly related to testability, but the terms are not equiva-

lent. Sensitivity focuses on a single location within a program and the impact

a fault at that location can have on the input/output behavior of the pro-

gram; testability encompasses the whole program and its sensitivities under

a given input distribution. In this paper we discuss a means whereby the

testability of the whole program can be estimated from the sensitivities of its

locations. Sensitivity analysis is the process of determining the sensitivity of

a location in a program. From the collection of sensitivities over all locations,

we determine the testability of the program.

One method of performing sensitivity analysis is discussed here, called

PIE analysis (for Propagation, Infection, and Execution analysis). PIE is

4



dynamic in the sense that it requires execution of the code. Inputs are ran-

domly selected from the input distribution and the computational behavior

of the code on these inputs is compared against the behavior of similar code

(similar in ways described later). PIE analysis is dynamic, but it is not soft-

ware testing because no outputs are checked against a speci�cation or oracle.

The next section of this paper describes the computational behavior we are

investigating in a manner similar to [3]. Next we describe the PIE method

of sensitivity analysis. We then show how to use PIE results to quantify the

testability of a program.

2 ault ailure odel

If the presence of faults in programs guaranteed program failure, every pro-

gram would be highly testable. To understand why this is not the case, it

is necessary to consider the sequence of location executions that a program

performs. In this discussion, a computation refers to an execution trace in

which the value of each variable is displayed after the execution of each loca-

tion for some input. A particular trace is produced by a program in response

to a particular input. Each set of variable values displayed after the execu-

tion of a location in a computation is called a data state. After executing a

fault the resulting data state might be corrupted; if there is corruption in a

data state, we say that infection has occurred and the data state contains an

error, termed a data state error.

The program, P , in Figure 1 is intended to display, if possible, an integral

solution to the quadratic equation ax2
+ bx + c, for integral a, b, and c (we

5



f1g read (a,b,c);

f2g if a <> 0 then begin
f3g d := b�b � 5�a�c;
f4g if d < 0 then
f5g x := 0

else
f6g x := (�b + trunc(sqrt(d))) div (2�a)

end
else

f7g x := � c div b;

f8g if (a�x�x + b�x + c = 0) then
f9g writeln(x, ' is an integral solution')

else
f10g writeln(' ere is no integral solution')

i ure . r ra .

have �xed a, b, and c such that a and c are in [0,10] and b is in [1,1000]).

The program has a fault at line 3: the constant 5 should be the constant

4. Each computation of P falls into one of four categories: (1) the fault is

not executed; (2) the fault is executed, but does not infect any data state;

(3) the fault is executed, some data state or states are infected, but the

output is correct anyway; or (4) the fault is executed, infection occurs, and

the infection causes an incorrect output. Only computations in the �nal

category would make the fault visible to a tester. Here are examples of each

type of computation of P :

1. The computation for the input (a; b; c) (0; 3; ) is displayed in Figure

2. The value of a 0 causes the selection of a path that does not

include the fault. learly any such execution will not fail.

2. The computation for input (3,2,0) is shown in Figure 3. The fault is



ocation a c ut ut

1 0 3 6 unde ned unde ned

7 0 3 6 unde ned �2

8 0 3 6 unde ned �2

9 0 3 6 unde ned �2 �2 is an integral solution

i ure . (0;3;6) a i u .

ocation a c ut ut

1 3 2 0 unde ned unde ned

2 3 2 0 unde ned unde ned

3 3 2 0 4 unde ned

6 3 2 0 4 0

8 3 2 0 4 0

9 3 2 0 4 0 0 is an integral solution

i ure . (3;2;0) a i u .

reached but the computation proceeds just as if there were no fault

present, because c 0 prevents the fault from impacting the compu-

tation. No infection has occurred.

3. For input (1,�1;�12) the fault infects the succeeding data state, pro-

ducing 1 instead of 49 (see Figure 4). This data state error

then propagates to location where it is canceled by the integer square

root calculation, because is computed in either case.

4. Executing the program with input (10,0,10), executes the fault which

then infects the succeeding data state in such a way that the data state

error propagates to the output (See Figure 5).

omputation type (1) demonstrates that an execution of P can only reveal

information about the portion of the code that is executed. omputation



ocation a c ut ut

1 1 �1 �12 unde ned unde ned

2 1 �1 �12 unde ned unde ned

3 1 �1 �12 61 unde ned

6 1 �1 �12 61 4

8 1 �1 �12 61 4

9 1 �1 �12 61 4 4 is an integral solution

i ure . (1;�1;�12) a i u .

ocation a c ut ut

1 10 0 10 unde ned unde ned

2 10 0 10 unde ned unde ned

3 10 0 10 �500 unde ned

4 10 0 10 �500 unde ned

5 10 0 10 �500 0

10 10 0 10 �500 0 ere is no integral solution

i ure . (10;0;10) a i u .

types (2) and (3) provide a false sense of security to a tester because the

fault is executed but no visible failure results. There are two reasons that an

executed fault may remain hidden during random black box testing: a lack of

infection (meaning a data state error is not created) and a lack of propagation

(meaning a data state error ceases to exist to the output). omputation type

(4) illustrates three necessary and su�cient conditions for a fault to produce

a failure:

1. The fault must be executed.

2. The succeeding data state must be infected.

3. The data state error must propagate to output.



These three phenomena comprise the fault/failure model. This model under-

lies the dynamic method discussed here to determine the sensitivity of a given

location in the code. omplete sensitivity analysis requires every location

to be analy ed for three properties: the probability of execution occurring,

the probability of infection occurring, and the probability of propagation

occurring. An execution-based method for estimating these probabilities is

discussed in the following section.

en iti it nal i ecution In ection

and ro a ation

The previous section introduced the three part model of software failure: (1)

execution, (2) infection, and (3) propagation to output. In this section we use

this model to analy e the sensitivity of locations to potential (and unknown)

faults. Sensitivity analysis is decomposed into execution analysis, infection

analysis, and propagation analysis|one type of analysis to handle each part

of the model.

All three analyses can be accomplished at several di�erent levels of abstrac-

tion: programs, modules, and statements are three such levels. In this section

we describe an analysis done on program locations where a location is a unit

of code that either changes the value of a variable, changes the ow of con-

trol, or produces an output. A program location is similar to a single high

level statement, but some such statements contain multiple locations. (For

9



example, rea (a; b) contains two locations.)

. . ecutio al sis

Execution analysis is the most straightforward of the three analyses. xecu-

tion analysis requires a speci�ed input distribution (as does any quanti�able

testing method). Execution analysis executes the code with random inputs

from that distribution and records the locations executed by each input. This

produces an estimate of the probability that a location will be executed by a

randomly selected input according to this distribution. The estimate of this

probability is termed an execution estimate. Hence execution analysis is con-

cerned with the likelihood that a particular location will have an opportunity

to a�ect the output.

The algorithm for �nding an execution estimate is:

1. Set array to eroes, where the si e of is the number of

locations in the program being analy ed,

2. Instrument the program with \write" statements at each location that

print the location number when the location is executed, making sure

that if a location is repeated more than once on some input, the \write"

statement for that location is only executed once for that input,

3. Execute input points on the \instrumented" program, producing

strings of location numbers,

4. For each location number in a string, increment the corresponding

. If a location is executed on every input, will

equal ,

10



5. ivide each element of by yielding an execution estimate

for location .

Each execution estimate is a function of the program and an input distribu-

tion.

. . fectio al sis

Infection analysis estimates the probability that a mutant at a particular

location will adversely a�ect the data state which immediately results when

the location is executed. In other words, will the mutant produce a value in

the following data state that is di�erent than the value that is produced by

the original location

Infection analysis is similar to mutation testing; what is di�erent is the

information collected [4]. For a given location in a program, we do not know

whether or not a fault is present, and we don't know what types of faults are

possible at the location. So we create a set of mutants at each location. After

creating a set of mutants, we obtain an estimate of the probability that the

data state is a�ected by the presence of a mutant for each mutant in the set.

We select a mutant from the set, mutate the code at the location, and execute

each resulting mutant many times. The data states created by executing the

mutants are checked against the data states from the original location to

determine if the mutants have infected the data states. The proportion of

executions that infect for a particular mutant are the infection estimate for

that mutant. In the next section we describe how we extract a single infection

estimate from the set of infection estimates for the location.

The algorithm for �nding an infection estimate is:

11



1. Set variable to 0,

2. reate a mutant for location denoted as ,

3. Present the original location and the mutant with a randomly se-

lected data state from the set of data states that occur immediately

prior to location and execute both locations in parallel,

4. ompare the resulting data states and increment when the func-

tion computed by does not equal the function computed by for this

particular data state,

5. epeat algorithm steps 3 and 4 times,

. ivide by yielding an infection estimate.

An infection estimate is a function of a location, the mutant created, and the

set of data states which occur before the location. This algorithm is generally

performed many times at a location to produce a set of infection estimates.

The exact nature of the best code mutations for infection analysis is still

being researched, but we have obtained encouraging results from a small set of

mutations based on semantic changes. These mutations are straightforward

to describe, and can be automated. Furthermore, the results of the analysis

using these mutations has been encouraging. To illustrate this set of mutants,

Figure shows the mutants generated for locations 3, 4, and of program

P . For each mutant, we give the infection estimate obtained from executing

10000 random inputs through each.

12



. . ropagatio al sis

ropagation analysis estimates the probability that an infected data state at

a location will propagate to the output. To make this estimate, we repeatedly

perturb the data state which occurs after some location of a program, chang-

ing one value in the data state (hence one live variable receives an altered

value) for each execution. We term a variable as being live at a particular

location of a program if the variable has any potential of a�ecting the output

of the program. For instance, a variable which is de�ned but never refer-

enced is one example of a variable which would not be live. By examining

how often a forced change into a data state a�ects the output, we calculate

a propagation estimate, which is an estimate of the a�ect that a live vari-

able (the variable that received the forced change into the data state) has on

the program's output at this location. We �nd a propagation estimate for a

set of live variables at each location (assuming there is more than one live

variable at a location), thus producing a set of propagation estimates|one

propagation estimate per live variable.

If we were to �nd that at a particular location a particular live variable

had a near 0.0 propagation estimate, we would reali e that this variable had

virtually no a�ect on the output of the program at this location. This does

not necessarily mean that this variable has no a�ect on the output|only

that it has little e�ect. Hence propagation analysis is concerned with the

likelihood that a particular live variable at a particular location will cause the

output to di�er after the live variable's value is changed in the location's data

state. In the next section we describe how we extract a single propagation

estimate from the set of propagation estimates for the location.

13



Propagation analysis is based on changes to the data state. To obtain

the data states that are then executed to completion, we use a mathematical

function based upon a random distribution termed a perturbation function.

A perturbation function inputs a variable's value and produces a di�erent

value chosen according to the random distribution|the random distribution

uses the original value as a parameter to in when producing the di�erent

value. We are researching di�erent perturbation functions|we currently use

a uniform distribution whose mean is the original value. The maximum

and minimum \di�erent" values which can be produced by the perturbation

function are determined by the range of values that a variable had during

the executions used to obtain the execution estimates.

An algorithm for �nding a propagation estimate is:

1. Set variable to 0,

2. andomly select a data state from the distribution of data state that

occur after location ,

3. Perturb the sampled value of variable a in this data state if a is de�ned,

else assign a a random value, and execute the succeeding code on both

the perturbed and original data states,

4. For each di�erent outcome in the output between the perturbed data

state and the original data state, increment ; increment if

an in�nite loop occurs (set a time limit for termination, and if execution

is not �nished in that time interval, assume an in�nite loop occurred),

5. epeat algorithm steps 2-4 times,

14



. ivide by yielding a propagation estimate.

A propagation estimate is a function of a location, a live variable, the set of

data states which occur after the location (which are a function of some input

distribution), and the code which is possibly executed after the location.

Execution, infection, and propagation analyses each involve signi�cant

execution time, since bookkeeping, mutating, and perturbing are done on

a location by location basis. However (unlike testing) none of this anal-

ysis requires an oracle to determine a \correct" output. Instead, we can

detect changes from the original input/output behavior without determin-

ing correctness. This allows the entire sensitivity analysis to be automated.

Sensitivity analysis, though computationally intensive, is not labor inten-

sive. This emphasis on computing power seems increasingly appropriate as

machine executions become cheaper and programming errors become more

expensive.

When all three analyses are complete, we have three sets of probability esti-

mates for each location:

1. Set 1: The estimate of the probability that a location is executed (one

number);

2. Set 2: The estimates of the probabilities, one estimate for each mutant

at the location, that given the location is executed, the mutant will

adversely a�ect the data state; and

15



3. Set 3: The estimates of the probabilities, one estimate for each live

variable at the location, that given that the variable in the data state

following the location is infected, the output will be changed.

For each location there are several ways to manipulate these three esti-

mates, but we will discuss only one. Others may be found in [2]. In order to

reveal a fault at a particular location with a particular test case, the location

must be executed, an infection must occur, and the infection must propagate

to the output. If any of these does not occur, the fault will be \invisible" to

the tester. Therefore, a conservative estimate of the sensitivity for a location

can be derived by using the minimum estimate from each of these three sets.

We choose the minimum estimate from each set because we think it is

better to overestimate the amount of random black box testing needed to

reveal a fault, rather than to underestimate it. If we underestimate the

amount of testing necessary for a program, we may be fooled into thinking

no fault is there when there really is a fault there. If we overestimate the

amount of testing required, the worst that can happen is that we waste testing

resources by performing too much testing. We prefer the latter outcome, and

therefore adopt the conservative approach.

The next section describes how the numbers obtained from our sensitivity

analysis correlated with actual testing behavior in an experiment.

elatin en iti it to e ta ilit

We produce the sensitivity of a location from the propagation, infection, and

execution estimates at that location. ecall that in the fault/failure model,

1



there are three conditions necessary for a software failure. The failure prob-

ability of a program is the probability that some randomly selected input

according to some distribution will produce a failure. For a correct program

which is injected with a speci�c fault at a single location, the failure proba-

bility of the program is the product of the probability of execution, infection,

and propagation occurring for this fault. In the \real-world" scenario that

we are in, we do not have the luxury of knowing about the occurrence of a

speci�c fault at a speci�c location. What we have available is the current

program, without a speci�cation or oracle, and an input distribution. Thus

we use the estimates obtained from the algorithms to estimate the a�ect that

a fault at this location, if a fault exists, would have on the output.

A simple method for �nding the sensitivity of a location is to multiply

the minimum propagation estimate, minimum infection estimate, and exe-

cution estimate of a location to get the location's sensitivity. As described

above, we have chosen to select the minimum infection and propagation esti-

mates available at a location in attempts to avoid overestimating a location's

sensitivity.

Each estimate produced by our algorithms has an associated con�dence

interval; we choose to take the lower bound on the interval as re ected in

equation 1. Equation 1 is our �rst attempt at �nding the sensitivity of some

location .
1

� (min[ ; ]) � (min[ ;a]) (1)

� denotes the lo er bound or the con dence inter al or an esti ate and �

denotes the upper bound or the con dence inter al or an esti ate. represents the

e ecution esti ate or location . represents the propa ation esti ate at location

a ter li e ariable is perturbed. represents the in ection esti ate created by utant

at location .

1



But propagation estimates are a function of the infections created by random

distributions, not infections created by speci�c mutants. In the worst case

possible, the proportion of data state errors created by the mutant that pro-

duces the minimum infection estimate is exactly the proportion of data state

errors that did not propagate when the minimum propagation estimate was

produced. Although unlikely, since we want an underestimated sensitivity

instead of an overestimated sensitivity, we modify equation 1 to account for

this possibility and produce the sensitivity of a location (denoted as ):

� [ ((min[ ;a]) ; (min[ ; ]) )] (2)

where

(a; b)
a� (1� b) if a� (1� b) 0

0 otherwise.

In order to explore the relationship between sensitivity analysis and testa-

bility, we performed an experiment. PIE was performed at locations 3, 4,

and of program P with 10,000 random inputs and the following random in-

put distributions: a and c were equilikely[0,10], and b was equilikely[1,1000].

Hence there are 121000 distinct inputs to this program. The results of execu-

tion analysis appear in Figure , the results of propagation analysis appear

in Figure , and the results of infection analysis appear in Figure .

The sensitivities found using equation 2 for the locations 3, 4, and are

all 0.0. Locations 3 and produced very low propagation estimates, and

location 4 produced a very low infection estimate, thus resulting in ero

sensitivities. At �rst glance, this seems to be less than informative, however

this information is both reasonable and useful.

Location is critical in reducing the propagation estimates found from the

1



ocation erturbed ariable ro agation esti ate

3 0.076

3 a 0.0015

3 0.0822

4 0.076

4 a 0.0015

4 0.0822

6 0.00044

6 0.09

6 a 0.00033

i ure . r a a i e i a e r a i a .

ocation xecution esti ate

3 0.9083

4 0.9083

6 0.901

i ure . e u i e i a e r a i a .

preceding locations. Locations 2- in P do virtually all of the computing

of x in P . At location , unless its condition is true, computation of x in

locations 2- is not referenced in the output; the program prints out that

there is no solution, and whatever computations occurred in locations 2-

are ignored. This is a program that by it's nature rarely has a solution with

the particular input distribution we selected. (We purposely selected this

input distribution to highlight what we mean by low sensitivities.) Hence,

data state errors that are injected into locations 3, 5, , or rarely are given

the opportunity to a�ect the output, because location 9 has a low execution

estimate. The low sensitivities for these locations re ect reality|with the

input distribution given, data state errors in locations 3- will have little if

19



ocation utant n ection esti ate

3 = sqr � � a � 0.912

3 = sqr � � � 0.818

3 = sqr � � a � 0.999

3 = sqr � � a � a 0.906

3 = sqr + � a � 0.912

3 = sqr � � a � 1.0

4 if <=0 then 0.00022

4 if <10 then 0.0011

4 if =0 then 0.01

6 x := (�a + trunc(sqrt(d))) div (2�a) 0.99

6 x := (�b + trunc(sqr(d))) div (2�a) 0.99

6 x := (�b + trunc(sqrt(d))) div (2) 0.059

i ure . e i e i a e r a i a .

no a�ect on the output. Thus, under this distribution, P has low testability.

We now shift our attention to program in Figure 10. Location 2 in

has a higher sensitivity than the locations in P . Since location 2 is an output

location, the propagation estimate is 1.0, since any change to the output data

state changes the output. Since the execution estimate at this location is 1.0,

the sensitivity of location 2 in depends almost entirely on the minimum

infection estimate of location 2. Figure 11 shows infection estimates found

for a small set of mutants tried at location 2. As can be seen, the minimal

infection estimate mutant from this set of 0. 23 , which is also the sensitivity

(since 1 � (0 23 � (1 � 1)) 0 23 ). Hence the minimum over the set of

infection estimates becomes the sensitivity of location 2. For this location,

sensitivity analysis predicts that this location will not require much black

box testing to reveal a fault in location 2 if one exists. is a program with

high testability.

A \blind" experiment using P was run to test the hypothesis that sen-

20



sitivity analysis is helpful in estimating testability. The hypothesis of this

blind experiment among the authors was that for an in ected fault the sen-

sitivity for the location where the fault was in ected was always less than or

equal to the resulting failure probability estimate of any fault in ected at that

location. Notice that we use sensitivities (which are found solely from P with

a fault) to underestimate the failure probabilities that occur from a set of

injected faults into the oracle version of P . One author produced the sensi-

tivities already shown, while another author independently produced failure

probability estimates after placing faults at locations 3, 4, and in P . The

failure probability estimates are based on 10000 inputs for the faults injected

at locations 3 and , and 100000 inputs for the fault injected at location 4.

The resulting failure probability estimates and faults are in Figure 9. In each

case, the hypothesis was supported.

The sensitivity of a location is in some sense an indicator of how much

testing is necessary to reveal a fault at that location. For instance, a sensi-

tivity of 1.0 at some location suggests that on the �rst test of the location,

failure will result if there exists a fault in the location, and hence the exis-

tence of a fault will immediately be revealed. A sensitivity of 0.01 suggests

that, on average, 1 in every 100 tests of a location will reveal a failure if a

fault exists. Sensitivity gives a rough estimate of how frequently a fault will

be revealed if one exists at a location.

The sensitivity can be used as an estimate of the minimum failure

probability for location in the equation 1 � (1 � ) c, where c is the

con�dence that the actual failure probability of location is less than . With

this equation, we can obtain the number of tests needed for a particular

21



ocation n ected ault ailure robabilit esti ate

3 = sqr a � � a � 0.8970

4 if <=0 then 0.00012

6 x := (�b + trunc(sqrt(d))) div 2 � a 0.9001

i ure . ai ure r a i i e i a e a u a .

f1g read (a,b,c);

f2g writeln (a�a + b�a + c);

i ure . r ra .

c. To obtain a con�dence c that the true failure probability of a location is

less than given the sensitivity of the location, we need to conduct tests,

where

ln(1 � c)

ln(1� )

(3)

When 0 0, we e�ectively have the con�dence c after tests that location

does not contain a fault. To obtain a con�dence c that the true failure

probability of a program is less than given the sensitivities of its locations,

we need to conduct tests, where

ln(1 � c)

ln(1�min [ ])

(4)

When min [ ] 0 0, we e�ectively have the con�dence c after tests that

the program does not contain a fault. Note that for equation 3 and equa-

tion 4, can not be ero or one.

We conservatively estimate the testability of an entire program to be the

22



ocation utant n ection esti ate

2 writeln (a�a + b�a + a) 0.9085

2 writeln (a�a + b�a -c) 0.9135

2 writeln (a�a - b�a +c) 0.909

2 writeln (a�c + b�a +c) 0.8237

i ure . e i e i a e r a i .

minimum sensitivity over all locations in the program:

min[ ] (5)

Hence the greater the testability of a program, the fewer tests needed in

equation 4 to achieve a particular con�dence c that the program does not

contain a fault.

onclu ion

Sensitivity analysis is a dynamic method for analy ing code. This analysis

embodies a three part fault/failure model: execution, infection, and propa-

gation. The method we describe for estimating sensitivity is computationally

intensive, but does not require an oracle or human intervention. In several

experiments, a conservative interpretation of sensitivity analyses successfully

identi�ed locations that could easily hide faults from random black box test-

ing.

Sensitivity analysis can add another dimension to software quality assur-

ance. uring initial code development, sensitivity analysis can identify code

that will inherit a greater tendency to hide faults during testing; such code

can be rewritten or can be subjected to other types of analysis to detect

23



faults. uring random black box testing, sensitivity analysis will help inter-

pret testing results; we will have more con�dence in code with high sensitivity

that reveals no errors during random black box testing than code with low

sensitivity that reveals no errors during the same type of testing. Testing re-

sources can be saved by testing high sensitivity locations less frequently than

might otherwise be necessary to obtain con�dence in the code; conversely,

low sensitivity locations may require additional testing. uring maintenance,

sensitivity analysis can be used to identify locations where subtle bugs could

be hiding from conventional testing techniques; alternative analyses could

then be used at those locations.

Sensitivity analysis includes some characteristics that are similar to mu-

tation testing, but the di�erences are signi�cant. Infection analysis mutates

source code, and as such is related to mutation testing; however, the goals

of the two techniques are distinct. utation testing seeks an improved set

of test data; infection analysis seeks to identify locations where faults are

unlikely to change the data state. Propagation analysis mutates the data

state, not the code, and then examines whether or not the output is e�ected.

This is similar to some data ow research, but again the aim is distinct. Sen-

sitivity analysis dynamically estimates relevant probabilities, and uses these

estimates to better understand test results; to our knowledge, this emphasis

is unique.

24



e erence

[1] W E. H . \A Functional Approach to Program Testing and

Analysis." I Transactions on Software ngineering, October 19 .

[2] . L . . \Applying Sensitivity Analysis

Estimates to a inimum Failure Probability for Software Testing." roceed-

ings of the ighth aci�c orthwest Software uality onf , October 1990.

[3] L. . . \A Theory of Fault-Based Testing." I Transactions

on Software ngineering, August 1990.

[4] A. . L F . S .

\Hints on Test ata Selection: Help for the Practicing Programmer." om-

puter, pages 34{41, April 19 .

25


